Effects of Head Models and Dipole Source Parameters on EEG Fields
نویسندگان
چکیده
Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was introduced for solving EEG forward problem and numerical simulation is implemented in three kinds of ovoid head models. We present the performances of the surface potential in the face of varying dipole source parameters in detail. The results show that the potential patterns are similar for different dipole position in different head shapes, but the peak value of potential is significantly influenced by the head shape. Dipole position induces a great effect on the peak value of potential and shift of peak potential. The degree of variation between sphere head model and non-sphere head models is seen at the same time. We also show that PLS method with the trigonometric basis is superior to the constant basis, linear basis, and quadratic basis functions in accuracy and efficiency.
منابع مشابه
Combined EEG/MEG source analysis using cali- brated finite element head models
We propose a new method for a combined MEG/EEG source analysis. We optimize the tissue conductivities of a realistically shaped four-compartment finite-element head volume conductor based on measured somatosensory evoked potentials (SEP) and fields (SEF). Our proposed method uses the source parameters from the MEG dipole fit as a constraint for the conductivity estimation based on the EEG. The ...
متن کاملInfluence of skull conductivity perturbations on EEG dipole source analysis.
PURPOSE Electroencephalogram (EEG) source analysis is a noninvasive technique used in the presurgical of epilepsy. In this study, the dipole location and orientation errors due to skull conductivity perturbations were investigated in two groups of three-dimensional head models: A spherical head model and a realistic head model. METHODS In each group, the head model had a brain-to-skull conduc...
متن کاملMinimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆
The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized ...
متن کاملEffects of dipole position, orientation and noise on the accuracy of EEG source localization
BACKGROUND The electroencephalogram (EEG) reflects the electrical activity in the brain on the surface of scalp. A major challenge in this field is the localization of sources in the brain responsible for eliciting the EEG signal measured at the scalp. In order to estimate the location of these sources, one must correctly model the sources, i.e., dipoles, as well as the volume conductor in whic...
متن کاملError bounds for EEG and MEG dipole source localization.
General formulas are presented for computing a lower bound on localization and moment error for electroencephalographic (EEG) or magnetoencephalographic (MEG) current source dipole models with arbitrary sensor array geometry. Specific EEG and MEG formulas are presented for multiple dipoles in a head model with 4 spherical shells. Localization error bounds are presented for both EEG and MEG for ...
متن کامل